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Abstract 

This work presents solutions of hyperbolic partial differential 

equations on periodic domains using a high-order numerical 

scheme. A Totally Volume-Integrated Discontinuous Galerkin 

(TVI-DG) method is developed explicitly for spatial discretization 

of the periodic interval [-π, π], utilizing an orthogonal polynomial 

basis inspired by Fourier. The integration of semi-discrete systems 

in time using Second and third-order Strong Stability Preserving 

(SSP) schemes, also defined on the same periodic interval, which 

are designed to have better stability properties compared to classical 

SSP methods. The spatial and temporal discretizations are derived 

from a unified weighted residual formulation using a standard 

Galerkin approach. The efficiency of the proposed method is proved 

through the linear advection equation and the one-dimensional heat 

equation. The numerical results of the conducted benchmark test 

cases confirm the accuracy and efficiency of the proposed methods. 

A comparison between the shape function of this work [-π, π] and 

those for the standard interval [0, 1] shows that the numerical results 

are equivalent at a time equal to 2π, highlighting the impact of the 

computational domain on solution behavior. This work is part of a 

series extending high-order DG methods to general intervals using 

generalized polynomial bases. 

Keywords: Polynomial Discretization, Hyperbolic Conservation 

Laws, TVI-DG Method, SSP Time Schemes, Orthogonal 

Polynomials, Periodic Intervals.  
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يًا مع الحجم، مع تكامل زمني طريقة جالركين الغير متصلة متكاملة كل
 [π, π-]قوي يحافظ على الاستقرار، لحل مسائل دورية على الفترة 

 2مغاجل حمد، شعبان أ1الهادي براهيمالهادي إ
 جامعة بنغازي، ليبياكلية الهندسة، قسم الهندسة الميكانيكية،  1
 جامعة الزاوية، ليبياكلية الهندسة، قسم الهندسة الميكانيكية،  2

  
 الملخص

يقدم هذا البحث حلولًا لمعادلًت تفاضلية جزئية زائدية على نطاقات دورية باستخدام 
طريقة جالركين غير متصلة متكاملة كلياا مع الحجم تم تطوير مخطط عددي عالي الرتبة. 

(TVI-DG[ ا للتقسيم المكاني للفترة الدورية [، باستخدام أساس متعدد π ،π-( خصيصا
المستوحى من فورييه. تكامل الأنظمة شبه المنفصلة في الزمن باستخدام الحدود المتعامد 

( من الرتبتين الثانية والثالثة، والمُعرّفة SSPمخططات الحفاظ على الًستقرار القوي )
ا على نفس الفترة الدورية، والتي صُممت لتكون ذات خصائص استقرار أفضل مقارنةا  أيضا

ا اق التقديرات المكانية والزمانية من صيغة موحدة للبقايالتقليدية. يتم اشتق SSPبأساليب 
الموزونة باستخدام نهج جاليركين القياسي. تم إثبات كفاءة الطريقة المقترحة من خلال 
معادلة الحمل الخطي ومعادلة الحرارة أحادية البعد. تؤكد النتائج العددية لحالًت الًختبار 

الة المقارنة بين دأظهرت فاءة الطرق المقترحة. المعيارية التي تم إجراؤها على دقة وك
أن النتائج العددية   [1 ,0]وتلك الخاصة بالفترة القياسية   [π, π-]الشكل في هذا العمل 

، مما يُبرز تأثير المجال الحسابي على سلوك الحل. يُعد 2πمتكافئة عند زمن يساوي 
ا من سلسلة دراسات تُوسّع نطاق طرق ال تشمل توليد التفاضلي عالي الرتبة لهذا العمل جزءا

 فترات عامة باستخدام قواعد متعددة الحدود معممة. 

، TVI-DG ة، طريقةيالتقطيع متعدد الحدود، قوانين الحفظ الزائد :الكلمات المفتاحية
 .، متعددات الحدود المتعامدة، فترات دوريةSSP مخططات زمنية

1. Introduction 

This is the third article of a series [1, 2] devoted to the construction 

and study of the so-called Totally Volume-Integrated Discontinuous 

Galerkin (TVI-DG) method. The numerical solution of hyperbolic 

conservation laws, characterized by their potential to develop 

discontinuities (shocks) even from smooth initial data, has been a 

http://www.doi.org/10.62341/elsj0912
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central challenge in computational physics for decades. The 

Discontinuous Galerkin (DG) method has emerged as a powerful 

framework for addressing this challenge, combining the high-order 

accuracy of spectral methods with the geometric flexibility and 

inherent conservativity of finite volume schemes. The evolution of 

DG methods can be broadly categorized into two paradigms: the 

nodal DG approach, which interpolates solution values at specific 

points within an element [3], and the modal DG approach, which 

represents the solution as a linear combination of orthogonal basis 

functions [4]. 

The standard DG methodology for a conservation law like 

𝑢𝑡 + 𝐅(𝑢)𝑥 = 0          (1) 

where 𝑢𝑡 represents the conservative variable, and F(u) stands for 

the conservative flux, which involves a two-step process. First, the 

spatial derivatives are discretized, transforming the Partial 

Differential Equation (PDE) into a system of Ordinary Differential 

Equations (ODEs) often referred to as a semi-discrete system [5, 

6], which can be expressed as:  

𝑢𝑡 = −𝐿𝑢.           (2) 

Here, 𝐿 is a discrete operator representing the spatial discretization. 

The second step involves applying a high-order time integration 

scheme to solve this system. A critical requirement for this time 

stepper is the Strong Stability Preserving (SSP) property, which 

ensures nonlinear stability under a CFL condition by preserving the 

stability properties of the forward Euler method [7, 8]. 

A key design choice in modal DG methods is the selection of the 

orthogonal polynomial basis, which is traditionally tied to the 

computational domain. Legendre and Chebyshev polynomials, 

special cases of the Jacobi polynomials, have become the de facto 

standard for canonical intervals like [-1, 1] and [0, 1] due to their 

superior approximation properties [9, 10]. The mathematical 

foundation for this approach is the representation of the solution 

𝑢(𝑥)  as a linear combination of an orthogonal system of functions 

[11, 12]: 

 𝑢(𝑥) = ∑ 𝑐𝑛𝜙𝑛
∞
0           (3) 

This set of real-valued functions 𝜙𝑛(𝑥) is said to be orthogonal with 

respect to a weight function 𝑤(𝑥) on the interval [a, b] if the set 

satisfies the following condition: 

http://www.doi.org/10.62341/elsj0912
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∫ 𝑤(𝑥)
𝑏

𝑎
𝜙𝑚(𝑥)𝜙𝑛(𝑥)𝑑𝑥 = 1   if  𝑚 = 𝑛 and 0 otherwise      (4) 

The expansion coefficients 𝑐𝑛 for the orthogonal expansion can be 

computed by the projection: 

 𝑐𝑛 =
∫ 𝑤(𝑥)𝑢(𝑥)𝜙𝑛(𝑥)

𝑏
𝑎

‖𝜙𝑛‖2
          (5) 

where 𝑤(𝑥) is the polynomial weight functions and ‖𝜙𝑛‖2 is the 

squared norm of the basis function 𝜙𝑛. Note that we use 𝑤(𝑥) and 

𝑤(𝑡) to denote polynomial weighting functions, distinguishing 

them from the governing equation’s weighting functions 𝑊(𝑥) and 

𝑊(𝑡). For problems defined on unbounded or semi-infinite 

domains, Laguerre and Hermite polynomials offer a natural basis 

[13]. However, for problems with inherent periodicity, the Fourier 

basis on an interval like [-π, π] is the optimal choice. While Kopriva 

[12] and others [14] have extensively used this framework for 

spectral methods, its integration into a modern DG 

formalism, particularly one that applies the same orthogonal 

projection principle consistently to both space and 

time discretizations on a non-standard interval, remains 

underexplored. Furthermore, the associated time integration 

schemes are almost exclusively designed for the standard [0, 1] 

interval, potentially introducing inefficiencies. 

This work is part of a series [1, 2] that aims to bridge this gap by 

constructing a high-order numerical framework where both the 

spatial and temporal discretizations are derived self-consistently for 

a specific interval using the projection method defined by Equations 

(3)-(5). In this paper, we focus on the periodic interval [-π, π]. Our 

primary contributions are: 

1. The formulation of a Totally Volume-Integrated 

Discontinuous Galerkin (TVI-DG) method for spatial 

discretization on [-π, π] using this orthogonal projection 

principle. 

2. The derivation of novel second and third-order Strong 

Stability Preserving (SSP) time integration schemes 

explicitly designed for the [-π, π] time interval, with 

optimized coefficients that distinguish them from classical 

SSP-RK methods. 

3. A comprehensive numerical validation of the proposed 

space-time framework on the linear advection and heat 

equations, demonstrating high-order accuracy and revealing 

http://www.doi.org/10.62341/elsj0912
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new insights into the influence of the computational domain 

on solution behavior. 

The paper is organized as follows: Section 2 details the TVI-DG 

spatial discretization for the [-π, π] interval. Section 3 introduces the 

new SSP time discretization schemes. Section 4 presents numerical 

results, and Section 5 provides concluding remarks. 

2. TVI-DG Spatial discretization in Interval [-π, π] 

For clarity in subsequent discussions, this section provides a concise 

overview of the discontinuous Galerkin (DG) semi-discretization 

method for solving partial differential equations (PDEs). We begin 

with the one-dimensional conservation law: 

 
𝜕𝑢

𝜕𝑡
+

𝜕𝐹(𝑢)

𝜕𝑥
= 0           (6) 

The numerical solution of Equation (6) is computed over the 

computational domain Ω, subjected to proper initial and boundary 

conditions. The weighted residual form is derived by multiplying 

Equation (6) by a test function 𝑊(𝑥) and integrating by parts over 

the domain Ω: 

∫ [𝑊(𝑥)𝑢𝑡 − 𝑊𝑥𝐹(𝑢)]
𝛺

𝑑𝛺 + ∫ [𝐹(𝑢). 𝑊(𝑥)]
𝛤

. 𝐧𝑑Γ = 0      (7) 

where 𝐧 represents the unit normal vector to the domain boundary 

Γ that subdivides the computational domain Ω into N non-

overlapping elements: 

𝛺 = ∑ 𝛺ℎ
𝑁
1            (8) 

yielding the element-wise formulation: 

∫ [𝑊ℎ(𝑥)𝑢𝑡 − 𝑊𝑥𝐹(𝑢ℎ)]
𝛺ℎ

𝑑𝛺ℎ + ∫ [𝐹𝑏(𝑢ℎ). 𝑊ℎ(𝑥)]
𝛤ℎ

. 𝐧𝑑Γℎ = 0     (9) 

where 𝐹(𝑢ℎ) and 𝑊ℎ(𝑥) are the flux and test function over the 

element domain, and 𝐹𝑏(𝑢ℎ) is the flux over the element boundaries.  

Omitting the element subscript (h) for simplicity and applying the 

divergence theory to the boundary term (last term) in Equation (9) 

yields: 

∫ [𝑊𝑢𝑡 −
𝜕𝑊

𝜕𝑥
𝐹(𝑢) + (

𝜕𝑊

𝜕𝑥
+ 𝑊

𝜕

𝜕𝑥
)𝐹𝑏]

𝛺
𝑑𝛺 = 0    (10) 

This defines the totally volume discontinuous Galerkin method 

(TVI-DG) [15].   

In this paper the element domain (interval) Ω = [- π, π] or (a = -π 

and b = π), 𝑤(𝑥) =1 and with 𝑢(𝑥) = 𝑊(𝑥) (the standard Galerkin 

http://www.doi.org/10.62341/elsj0912
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method, otherwise known as the Petrov-Galerkin method). For 

spatial discretization for the second-order: basis {ϕ0 = 1, ϕ1 = x}, 

and for the third-order: additional basis ϕ2 = x2, substituting these 

into equations (3-5) completes the spatial discretization. 

3. Strong Stability Preserving (SSP) - Time Discretization for 

Interval [-π, π] 

Following spatial discretization, we consider the semi-discrete form 

of Equation (10), isolating the spatial terms on the right-hand side. 

Then multiplying the equation by a temporal weighting function 

𝑊(𝑡) and integrating over the time domain Ω = [- π, π] yields: 

∫ 𝑊(𝑡)𝑄𝑡 = 𝑊(𝑡)𝐿𝑢
𝛺

            (11) 

where 𝑄𝑡 = 𝑊(𝑥)
𝜕𝑢

𝜕𝑡
 represents the weighted temporal derivative, 

and  𝐿𝑢 is the spatial discretized operator of 𝑢 function, which is 

constant in time.  

For this paper, we define the temporal basis function 𝑢(𝑡) and 

weight functions 𝑊(𝑡)  over the domain Ω = [-π π] with {ϕ0 = 1,    

ϕ1 = t} for the second-order polynomial shape, and add {ϕ2 = t2} for 

the third-order shape function, and then substituting these into 

equations (3-5) and simplifying, the second and third-order SSP-

time discretization are given as follows: 

The second-order SSP time discretization scheme for the [-π π] 

interval is given as: 

let 𝑢𝑛 = 𝑄𝑛. The update steps are:  

1. Initialization: 

𝑢0 = 𝑢𝑛     

2. First stage: 

𝑢1 = 𝑢0 + 6.28318530700648292253 𝐿𝑢0 ∆𝑡     

3. Second stage: 

𝑢2 = 𝑢0 + 3.141592653412999425 𝐿𝑢0 ∆𝑡 +     

3.141592653412999425 𝐿𝑢1 ∆𝑡  (12) 

where 𝐿𝑢𝑛 is the spatial discretization at step n and ∆𝑡 is the time 

step, 𝑛 = 0, 1, 2 

The third-order SSP scheme is given as: 

http://www.doi.org/10.62341/elsj0912
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1. Initialization: 

𝑢0 = 𝑢𝑛     

2. Predictor stage: 

𝑢2 = 𝑢0 + 6.28318530700648292253 𝐿𝑢0 ∆𝑡     

where 𝑢2 as a guess value. 

3. First stage: 

𝑢1 = 0.75 𝑢0 + 0.25 𝑢2 + 1.570796328436 𝐿𝑢0 

4. Second stage: 

𝑢2 = 𝑢0 + 6.283185309105 𝐿𝑢1 ∆𝑡 

5. Third stage: 

𝑢3 = 𝑢0 + 1.047197552291 𝐿𝑢0 +     

4.188790206070 𝐿𝑢1 + 1.047197552291 𝐿𝑢2    (13) 

For comparison with the standard SSP-time method, for reference, 

the classical second-order SSP-RK method is given as: 

1. First stage: 

𝑢1 = 𝑢0 + 𝐿𝑢0 ∆𝑡 

2. Second stage: 

𝑢2 = 𝑢0 + (0.5𝐿𝑢0 + 0.5𝐿𝑢1)∆𝑡      (14) 

4. Numerical Results 

All computations were conducted on an HP laptop equipped with an 

Intel® Core™ i7-10510U processor running at 1.80 GHz (up to 2.30 

GHz) and 8 GB RAM. The operating system used was Ubuntu 24.04 

LTS with the Linux distribution. The codebase was implemented in 

C++ and compiled using g++. Within this study, the Total Volume-

Discontinuous Galerkin method was implemented for all test cases. 
The global error was calculated as the difference between the exact 

and numerical solutions. The discrete L1 norm error is given as: 

       𝐿1 =
∑ (∑ |𝑢exact,𝑗

𝑒𝑑𝑜𝑓
𝑗=1 −𝑢𝑖,𝑗|)𝑁

𝑖=1

𝑡𝑑𝑜𝑓
   (15) 

where N is the total number of elements, 𝑒𝑑𝑜𝑓 is the element degree 

of freedom (local DOF), and 𝑡𝑑𝑜𝑓 is the total degree of freedom 

(𝑁 × 𝑒𝑑𝑜𝑓). 

http://www.doi.org/10.62341/elsj0912
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In all the series of papers addressing the spatial and temporal 

discretization of polynomials across intervals beyond [0, 1], 

identical sets of test cases were utilized. 

4.1 The linear advection equation test case 

The first benchmark problem solves the linear advection equation, 

considered in many references, such as [16, 17]. 

(
𝜕𝑢

𝜕𝑡
) +

𝜕𝐹(𝑢)

𝜕𝑥
= 0,    F(𝑢)  =  𝑢    (16) 

The initial condition is given as 𝑢(𝑥, 0) = sin (𝑥) with periodic 

boundary conditions. 

The problem domain [-π, π] is divided into N equally spaced 

elements. Approximation solutions are derived from 2nd and 3rd 

order polynomials within the interval [-π, π]. Furthermore, SSP time 

discretizations of 2nd and 3rd orders, given in equations (12) and (13), 

are used for time evaluation. The exact solution is represented as 

𝑢(𝑥, 𝑡) = sin(𝑥 − 𝑡). Figure 1 illustrates the numerical solutions 

within the interval [-π, π] with N = 100 elements at T = 1, using a 

2nd order polynomial for both space and time shape functions. The 

accuracy orders and L1 errors using N = 160 elements are shown in 

Figure 2 and given in Tables 1 and 2 for polynomial orders k = 2 and 

3, respectively. 

 

 
Figure 1. The numerical solutions of the linear advection equation at 

time T = 1 for the interval [-π, π], using N = 100 elements. 
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Figure 2. L1 error of polynomials of orders k2 and k3 for the 1D 

linear advection equation for the interval [-π, π]. 

Table 1. The order of accuracy and L1 error of the linear advection 

equation at time T = 1 for a polynomial of order k = 2 [-π, π] 

N L1 error L1 Order of accuracy 

10 2.06116050216110e-02 - 

20 5.18448524943224e-03 1.991184 

40 1.30569857098123e-03 1.989379 

80 3.27130411461764e-04 1.996884 

160 8.18019352136450e-05 1.999659 

Table 2. The order of accuracy and L1 error of the linear advection 

equation at time T = 1 for a polynomial of order k = 3 [-π, π ] 

N L1 error L1 Order of accuracy 

10 1.11302727661263e-03 - 

20 1.39357099935344e-04 2.997631 

40 1.73082313575405e-05 3.009256 

80 2.18519093073298e-06 2.985627 

160 3.04909076574088e-07 2.841308 

4.2 The one-dimensional heat equation test case 

The second benchmark test is the one-dimensional heat equation, 

also known as the 1D-diffusion equation: 

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2      (17) 

The equation is subjected to the following initial and boundary 

conditions: 

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

10 100 1000

L 1
 e

rr
o

r

N

L1 error for k =2

L1 error for k =3
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  𝑢(𝑥, 0) = sin(𝑥) , 𝑢(−𝜋, 𝑡) = 𝑢(𝜋, 𝑡) = 0 

To start the numerical solution, the second-order partial differential 

equation is reduced to two first-order differential equations (local 

discontinuous Galerkin method). The equations were solved in the 

domain [-π, π], which is divided into N = 40 equally spaced 

elements.  

Let 𝑄 =
𝜕𝑢

𝜕𝑥
 and 

𝜕𝑢

𝜕𝑡
=

𝜕𝑄

𝜕𝑥
. These two equations can then be 

solved numerically.      

Figure 3 illustrates the comparison between the numerical solutions 

obtained from shape functions represented by polynomials at the 

intervals [-π, π] and [0, 1] of order k = 2, at time T = 0.5 and 1. The 

illustration reveals that as time increases, the peak points decrease. 

On the other hand, the numerical results and Figure 3 show that the 

peak values are 0.605531 and 0.367076 for the standard polynomial 

interval [0, 1], respectively. In the interval [-π, π], the peak values at 

time T = 0.5 and 1 are 0.922938 and 0.852047, respectively. Finally, 

at time T = 2π, the maximum value is 0.369869, which is equivalent 

to the value obtained by the standard polynomial at time T = 1. 

 

Figure 3. The comparison between numerical solutions of sin(x), 1D heat 

equation for the intervals [-π, π] and [0, 1].  
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5. CONCLUSIONS 

In this work, we present a detailed investigation of polynomial 

discretization schemes of hyperbolic conservation laws through the 

TVI-DG method and SSP time discretizations. With the application 

of orthogonal polynomials suitable for specific intervals, we were 

able to develop second and third-order spatial discretization and 

SSP-time schemes for the periodic domain [-π, π]. Numerical results 

show the stability, accuracy, and effectiveness of the developed 

schemes in solving test problems. The study contributes to the 

enhancement of knowledge and the use of polynomial-based 

techniques in numerical solutions of hyperbolic conservation laws, 

presenting a capable approach for subsequent research and progress 

in computational fluid dynamics and related fields. 
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