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Abstract

This work presents solutions of hyperbolic partial differential
equations on periodic domains using a high-order numerical
scheme. A Totally Volume-Integrated Discontinuous Galerkin
(TVI-DG) method is developed explicitly for spatial discretization
of the periodic interval [-xt, @], utilizing an orthogonal polynomial
basis inspired by Fourier. The integration of semi-discrete systems
in time using Second and third-order Strong Stability Preserving
(SSP) schemes, also defined on the same periodic interval, which
are designed to have better stability properties compared to classical
SSP methods. The spatial and temporal discretizations are derived
from a unified weighted residual formulation using a standard
Galerkin approach. The efficiency of the proposed method is proved
through the linear advection equation and the one-dimensional heat
equation. The numerical results of the conducted benchmark test
cases confirm the accuracy and efficiency of the proposed methods.
A comparison between the shape function of this work [-r, «] and
those for the standard interval [0, 1] shows that the numerical results
are equivalent at a time equal to 2z, highlighting the impact of the
computational domain on solution behavior. This work is part of a
series extending high-order DG methods to general intervals using
generalized polynomial bases.

Keywords: Polynomial Discretization, Hyperbolic Conservation
Laws, TVI-DG Method, SSP Time Schemes, Orthogonal
Polynomials, Periodic Intervals.
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1. Introduction

This is the third article of a series [1, 2] devoted to the construction
and study of the so-called Totally Volume-Integrated Discontinuous
Galerkin (TVI-DG) method. The numerical solution of hyperbolic
conservation laws, characterized by their potential to develop
discontinuities (shocks) even from smooth initial data, has been a
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central challenge in computational physics for decades. The
Discontinuous Galerkin (DG) method has emerged as a powerful
framework for addressing this challenge, combining the high-order
accuracy of spectral methods with the geometric flexibility and
inherent conservativity of finite volume schemes. The evolution of
DG methods can be broadly categorized into two paradigms: the
nodal DG approach, which interpolates solution values at specific
points within an element [3], and the modal DG approach, which
represents the solution as a linear combination of orthogonal basis
functions [4].

The standard DG methodology for a conservation law like
u +Fw), =0 Q)

where u, represents the conservative variable, and F(u) stands for
the conservative flux, which involves a two-step process. First, the
spatial derivatives are discretized, transforming the Partial
Differential Equation (PDE) into a system of Ordinary Differential
Equations (ODEs) often referred to as a semi-discrete system [5,
6], which can be expressed as:

u; = —Lu. 2

Here, L is a discrete operator representing the spatial discretization.
The second step involves applying a high-order time integration
scheme to solve this system. A critical requirement for this time
stepper is the Strong Stability Preserving (SSP) property, which
ensures nonlinear stability under a CFL condition by preserving the
stability properties of the forward Euler method [7, 8].

A key design choice in modal DG methods is the selection of the
orthogonal polynomial basis, which is traditionally tied to the
computational domain. Legendre and Chebyshev polynomials,
special cases of the Jacobi polynomials, have become the de facto
standard for canonical intervals like [-1, 1] and [0, 1] due to their
superior approximation properties [9, 10]. The mathematical
foundation for this approach is the representation of the solution
u(x) as a linear combination of an orthogonal system of functions
[11, 12]:

u(x) = 280 Cntn 3)
This set of real-valued functions ¢,, (x) is said to be orthogonal with
respect to a weight function w(x) on the interval [a, b] if the set
satisfies the following condition:
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f: w(x) ¢ (x)Pp(x)dx =1 if m = n and 0 otherwise (4)

The expansion coefficients c¢,, for the orthogonal expansion can be
computed by the projection:

S WU dn(x) )
TNE

where w(x) is the polynomial weight functions and ||¢,,||? is the
squared norm of the basis function ¢,,. Note that we use w(x) and
w(t) to denote polynomial weighting functions, distinguishing
them from the governing equation’s weighting functions W (x) and
W(t). For problems defined on unbounded or semi-infinite
domains, Laguerre and Hermite polynomials offer a natural basis
[13]. However, for problems with inherent periodicity, the Fourier
basis on an interval like [-x, 7] is the optimal choice. While Kopriva
[12] and others [14] have extensively used this framework for
spectral methods, its integration into a modern DG
formalism, particularly one that applies the same orthogonal
projection principle consistently to both space and
time discretizations on a non-standard interval, remains
underexplored. Furthermore, the associated time integration
schemes are almost exclusively designed for the standard [0, 1]
interval, potentially introducing inefficiencies.

Ch =

This work is part of a series [1, 2] that aims to bridge this gap by
constructing a high-order numerical framework where both the
spatial and temporal discretizations are derived self-consistently for
a specific interval using the projection method defined by Equations
(3)-(5). In this paper, we focus on the periodic interval [-m, &t]. Our
primary contributions are:

1. The formulation of a Totally Volume-Integrated
Discontinuous Galerkin (TVI-DG) method for spatial
discretization on [-m, m] using this orthogonal projection
principle.

2. The derivation of novel second and third-order Strong
Stability Preserving (SSP) time integration schemes
explicitly designed for the [-m, m] time interval, with
optimized coefficients that distinguish them from classical
SSP-RK methods.

3. A comprehensive numerical validation of the proposed
space-time framework on the linear advection and heat
equations, demonstrating high-order accuracy and revealing
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new insights into the influence of the computational domain
on solution behavior.
The paper is organized as follows: Section 2 details the TVI-DG
spatial discretization for the [-7t, ] interval. Section 3 introduces the
new SSP time discretization schemes. Section 4 presents numerical
results, and Section 5 provides concluding remarks.

2. TVI-DG Spatial discretization in Interval [-&, «]

For clarity in subsequent discussions, this section provides a concise
overview of the discontinuous Galerkin (DG) semi-discretization
method for solving partial differential equations (PDEs). We begin
with the one-dimensional conservation law:

a_u OF(uw) _
at + ax 0 (6)

The numerical solution of Equation (6) is computed over the
computational domain Q, subjected to proper initial and boundary
conditions. The weighted residual form is derived by multiplying
Equation (6) by a test function W (x) and integrating by parts over
the domain Q:

J, W ()u — WeF(W)]d2 + [[F(w). W (x)].ndl' =0 )

where n represents the unit normal vector to the domain boundary
[' that subdivides the computational domain € into N non-
overlapping elements:

0 =30, 8
yielding the element-wise formulation:
fnh[Wh(x)ut — WyF(up)] dy + fph[Fb (un)-Wr(x)].ndl, =0 (9)

where F(uy) and W) (x) are the flux and test function over the
element domain, and F}, (uy,) is the flux over the element boundaries.
Omitting the element subscript (/) for simplicity and applying the
divergence theory to the boundary term (last term) in Equation (9)
yields:

ow ow a
[y W =2 F @) + G+ W )R, da =0 (10)

This defines the totally volume discontinuous Galerkin method
(TVI-DG) [15].

In this paper the element domain (interval) Q = [- &, ] or (a = -7
and b = 1), w(x) =1 and with u(x) = W (x) (the standard Galerkin

5 Copyright © ISTJ A ginae auball (5 gin
Ayl g o slell 40 sal) dlaall



http://www.doi.org/10.62341/elsj0912

International Scienceand ~ VOlume 37 aaad) gy p gl e g
Technology Journal Part 1 aaall - m

Akl g glall 4 gal) Al ISTJ}\(

http://www.doi.org/10.62341/elsj0912

method, otherwise known as the Petrov-Galerkin method). For
spatial discretization for the second-order: basis {¢po = 1, d1 = x},
and for the third-order: additional basis ¢» = x?, substituting these
into equations (3-5) completes the spatial discretization.

3. Strong Stability Preserving (SSP) - Time Discretization for
Interval [-wt, ]

Following spatial discretization, we consider the semi-discrete form
of Equation (10), isolating the spatial terms on the right-hand side.
Then multiplying the equation by a temporal weighting function
W (t) and integrating over the time domain Q = [- 7, 7] yields:

JoW(©Q: = W()Lu (11)

a . . .
where @, = W(x) a_ltl represents the weighted temporal derivative,

and Lu is the spatial discretized operator of u function, which is
constant in time.

For this paper, we define the temporal basis function u(t) and
weight functions W (t) over the domain Q = [-nt ©t] with {¢o = 1,
¢1 =t} for the second-order polynomial shape, and add {¢> =t} for
the third-order shape function, and then substituting these into
equations (3-5) and simplifying, the second and third-order SSP-
time discretization are given as follows:

The second-order SSP time discretization scheme for the [-r x]
interval is given as:

let u™ = Q™. The update steps are:
1. Initialization:

ul =u"
2. First stage:

ul = u® +6.28318530700648292253 Lu® At
3. Second stage:

u? = u® + 3.141592653412999425 Lu® At +
3.141592653412999425 Lu' At (12)

where Lu" is the spatial discretization at step n and At is the time
step,n =0,1,2

The third-order SSP scheme is given as:
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1. Initialization:

ul =y

2. Predictor stage:
u? = u® + 6.28318530700648292253 Lu® At

where u? as a guess value.
3. First stage:

u! =0.75u° + 0.25 u? + 1.570796328436 Lu®
4. Second stage:

u? = u® + 6.283185309105 Lu! At
5. Third stage:

u® =u® +1.047197552291 Lu® +
4.188790206070 Lu* + 1.047197552291 Lu? (13)

For comparison with the standard SSP-time method, for reference,
the classical second-order SSP-RK method is given as:
1. First stage:

ul =u® + Lu® At
2. Second stage:
u? = u® + (0.5Lu® + 0.5Lut)At (14)
4. Numerical Results

All computations were conducted on an HP laptop equipped with an
Intel® Core™ 17-10510U processor running at 1.80 GHz (up to 2.30
GHz) and 8 GB RAM. The operating system used was Ubuntu 24.04
LTS with the Linux distribution. The codebase was implemented in
C++ and compiled using g++. Within this study, the Total Volume-
Discontinuous Galerkin method was implemented for all test cases.
The global error was calculated as the difference between the exact
and numerical solutions. The discrete L1 norm error is given as:

N edo
_ Zi=1(2j=1f|uexact,j_ui,j|)

Ll tdof

(15)

where N is the total number of elements, edof is the element degree
of freedom (local DOF), and tdof is the total degree of freedom
(N X edof).
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In all the series of papers addressing the spatial and temporal
discretization of polynomials across intervals beyond [0, 1],
identical sets of test cases were utilized.

4.1 The linear advection equation test case

The first benchmark problem solves the linear advection equation,
considered in many references, such as [16, 17].

0 OF (u)
(6—’;)+ "W =0, F) = u (16)

The initial condition is given as u(x,0) = sin(x) with periodic
boundary conditions.

The problem domain [-m, m] is divided into N equally spaced
elements. Approximation solutions are derived from 2" and 3™
order polynomials within the interval [-w, t]. Furthermore, SSP time
discretizations of 2" and 3™ orders, given in equations (12) and (13),
are used for time evaluation. The exact solution is represented as
u(x,t) = sin(x — t). Figure 1 illustrates the numerical solutions
within the interval [-n, ] with N = 100 elements at 7 = 1, using a
2" order polynomial for both space and time shape functions. The
accuracy orders and L errors using N = 160 elements are shown in
Figure 2 and given in Tables 1 and 2 for polynomial orders £ =2 and
3, respectively.

1.5
| Solution at time T=1
1
0.5
>0
-0.5
-1
-1.5
-4 -2 0 2 4

X

Figure 1. The numerical solutions of the linear advection equation at
time 7 =1 for the interval [-, 7], using N = 100 elements.
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L, error

1.00E-01

1.00E-02

1.00E-03

1.00E-04

1.00E-05

1.00E-06

1.00E-07

10

=1 error for k =2

=1 error for k =3

1000

Figure 2. L; error of polynomials of orders £2 and &3 for the 1D

linear advection equation for the interval [-m, ].

Table 1. The order of accuracy and L1 error of the linear advection
equation at time T =1 for a polynomial of order k =2 [-7, 7|

N Lierror L1 Order of accuracy
10 2.06116050216110e-02 -

20 5.18448524943224e-03 1.991184

40 1.30569857098123e-03 1.989379

80 3.27130411461764e-04 1.996884

160 8.18019352136450e-05 1.999659

Table 2. The order of accuracy and L; error of the linear advection
equation at time 7 =1 for a polynomial of order k=3 [-7, 7t |

N Lierror L1 Order of accuracy
10 1.11302727661263e-03 -

20 1.39357099935344e-04 2.997631

40 1.73082313575405e-05 3.009256

80 2.18519093073298e-06 2.985627

160 3.04909076574088e-07 2.841308

4.2 The one-dimensional heat equation test case

The second benchmark test is the one-dimensional heat equation,

also known as the 1D-diffusion equation:

(17)

The equation is subjected to the following initial and boundary

ou _ d%u

ot 0x?
conditions:
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u(x,0) = sin(x), u(-m,t) =u(m,t) =0

To start the numerical solution, the second-order partial differential
equation is reduced to two first-order differential equations (local
discontinuous Galerkin method). The equations were solved in the
domain [-m, m], which is divided into N = 40 equally spaced
elements.

ou ou aQ

Let Q = I and T = I These two equations can then be

solved numerically.

Figure 3 illustrates the comparison between the numerical solutions
obtained from shape functions represented by polynomials at the
intervals [-mt, ] and [0, 1] of order k= 2, at time 7= 0.5 and 1. The
illustration reveals that as time increases, the peak points decrease.
On the other hand, the numerical results and Figure 3 show that the
peak values are 0.605531 and 0.367076 for the standard polynomial
interval [0, 1], respectively. In the interval [-&t, 7], the peak values at
time 7= 0.5 and 1 are 0.922938 and 0.852047, respectively. Finally,
at time 7' = 27, the maximum value is 0.369869, which is equivalent
to the value obtained by the standard polynomial at time 7' = 1.

1.5
T=0.5
1 | =—T=1
Standard Poly. T=0.5
0.5 T=2n
Standard Poly. T=1
=] 0
-0.5
-1
-1.5

Figure 3. The comparison between numerical solutions of sin(x), 1D heat
equation for the intervals [-wt, ] and [0, 1].
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5. CONCLUSIONS

In this work, we present a detailed investigation of polynomial
discretization schemes of hyperbolic conservation laws through the
TVI-DG method and SSP time discretizations. With the application
of orthogonal polynomials suitable for specific intervals, we were
able to develop second and third-order spatial discretization and
SSP-time schemes for the periodic domain [-w, t]. Numerical results
show the stability, accuracy, and effectiveness of the developed
schemes in solving test problems. The study contributes to the
enhancement of knowledge and the use of polynomial-based
techniques in numerical solutions of hyperbolic conservation laws,
presenting a capable approach for subsequent research and progress
in computational fluid dynamics and related fields.
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